PIDD Mediates NF-κB Activation in Response to DNA Damage
نویسندگان
چکیده
Activation of NF-kB following genotoxic stress allows time for DNA-damage repair and ensures cell survival accounting for acquired chemoresistance, an impediment to effective cancer therapy. Despite this clinical relevance, little is known about pathways that enable genotoxic-stress-induced NF-kB induction. Previously, we reported a role for the p53-inducible death-domaincontaining protein, PIDD, in caspase-2 activation and apoptosis in response to DNA damage. We now demonstrate that PIDD plays a critical role in DNA-damage-induced NF-kB activation. Upon genotoxic stress, a complex between PIDD, the kinase RIP1, and a component of the NF-kB-activating kinase complex, NEMO, is formed. PIDD expression enhances genotoxic-stress-induced NF-kB activation through augmented sumoylation and ubiquitination of NEMO. Depletion of PIDD and RIP1, but not caspase-2, abrogates DNA-damage-induced NEMO modification and NF-kB activation. We propose that PIDD acts as a molecular switch, controlling the balance between life and death upon DNA damage.
منابع مشابه
Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway.
Upon DNA damage, a complex called the PIDDosome is formed and either signals NF-kappaB activation and thus cell survival or alternatively triggers caspase-2 activation and apoptosis. PIDD (p53-induced protein with a death domain) is constitutively processed giving rise to a 48-kDa N-terminal fragment containing the leucine-rich repeats (LRRs, PIDD-N) and a 51-kDa C-terminal fragment containing ...
متن کاملAutoproteolysis of PIDD marks the bifurcation between prodeath caspase2 and prosurvival NFB pathway
Upon DNA damage, a complex called the PIDDosome is formed and either signals NF-jB activation and thus cell survival or alternatively triggers caspase-2 activation and apoptosis. PIDD (p53-induced protein with a death domain) is constitutively processed giving rise to a 48-kDa N-terminal fragment containing the leucine-rich repeats (LRRs, PIDD-N) and a 51-kDa C-terminal fragment containing the ...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملNaringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro
Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...
متن کاملDNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression
DNA damage is a vital challenge to cell homeostasis. Cellular responses to DNA damage (DDR) play essential roles in maintaining genomic stability and survival, whose failure could lead to detrimental consequences such as cancer development and aging. Nuclear factor-kappa B (NF-κB) is a family of transcription factors that plays critical roles in cellular stress response. Along with p53, NF-κB m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 123 شماره
صفحات -
تاریخ انتشار 2005